6 research outputs found

    Digital Palaeography

    Get PDF
    This article seeks to explore new digital ways of distinguishing between scribal hands in medieval manuscripts. An analysis of traditional palaeographical approaches to hand identification will be followed by a discussion in which attention will be paid both to the use of computer software to enhance existing methods of scribal identification, and to the benefits of "Quill", an innovative automatic writer identification tool. A case study involving a manuscript of the collected works of Christine de Pizan (London, British Library, Harley 4431) will serve to demonstrate that traditional palaeographical methods of analysing scribal hands can greatly benefit from the use of specialised computer software

    Prediction of heart failure 1 year before diagnosis in general practitioner patients using machine learning algorithms: a retrospective case-control study

    No full text
    Objectives Heart failure (HF) is a commonly occurring health problem with high mortality and morbidity. If potential cases could be detected earlier, it may be possible to intervene earlier, which may slow progression in some patients. Preferably, it is desired to reuse already measured data for screening of all persons in an age group, such as general practitioner (GP) data. Furthermore, it is essential to evaluate the number of people needed to screen to find one patient using true incidence rates, as this indicates the generalisability in the true population. Therefore, we aim to create a machine learning model for the prediction of HF using GP data and evaluate the number needed to screen with true incidence rates. Design, settings and participants GP data from 8543 patients (-2 to -1 year before diagnosis) and controls aged 70+ years were obtained retrospectively from 01 January 2012 to 31 December 2019 from the Nivel Primary Care Database. Codes about chronic illness, complaints, diagnostics and medication were obtained. Data were split in a train/test set. Datasets describing demographics, the presence of codes (non-sequential) and upon each other following codes (sequential) were created. Logistic regression, random forest and XGBoost models were trained. Predicted outcome was the presence of HF after 1 year. The ratio case:control in the test set matched true incidence rates (1:45). Results Sole demographics performed average (area under the curve (AUC) 0.692, CI 0.677 to 0.706). Adding non-sequential information combined with a logistic regression model performed best and significantly improved performance (AUC 0.772, CI 0.759 to 0.785, p<0.001). Further adding sequential information did not alter performance significantly (AUC 0.767, CI 0.754 to 0.780, p=0.07). The number needed to screen dropped from 14.11 to 5.99 false positives per true positive. Conclusion This study created a model able to identify patients with pending HF a year before diagnosis

    CHARGE-AF in a national routine primary care electronic health records database in the Netherlands: validation for 5-year risk of atrial fibrillation and implications for patient selection in atrial fibrillation screening

    No full text
    Aims To validate a multivariable risk prediction model (Cohorts for Heart and Aging Research in Genomic Epidemiology model for atrial fibrillation (CHARGE-AF)) for 5-year risk of atrial fibrillation (AF) in routinely collected primary care data and to assess CHARGE-AF’s potential for automated, low-cost selection of patients at high risk for AF based on routine primary care data.Methods We included patients aged ≥40 years, free of AF and with complete CHARGE-AF variables at baseline, 1 January 2014, in a representative, nationwide routine primary care database in the Netherlands (Nivel-PCD). We validated CHARGE-AF for 5-year observed AF incidence using the C-statistic for discrimination, and calibration plot and stratified Kaplan-Meier plot for calibration. We compared CHARGE-AF with other predictors and assessed implications of using different CHARGE-AF cut-offs to select high-risk patients.Results Among 111 475 patients free of AF and with complete CHARGE-AF variables at baseline (17.2% of all patients aged ≥40 years and free of AF), mean age was 65.5 years, and 53% were female. Complete CHARGE-AF cases were older and had higher AF incidence and cardiovascular comorbidity rate than incomplete cases. There were 5264 (4.7%) new AF cases during 5-year follow-up among complete cases. CHARGE-AF’s C-statistic for new AF was 0.74 (95% CI 0.73 to 0.74). The calibration plot showed slight risk underestimation in low-risk deciles and overestimation of absolute AF risk in those with highest predicted risk. The Kaplan-Meier plot with categories &lt;2.5%, 2.5%–5% and &gt;5% predicted 5-year risk was highly accurate. CHARGE-AF outperformed CHA2DS2-VASc (Cardiac failure or dysfunction, Hypertension, Age &gt;=75 [Doubled], Diabetes, Stroke [Doubled]-Vascular disease, Age 65-74, and Sex category [Female]) and age alone as predictors for AF. Dichotomisation at cut-offs of 2.5%, 5% and 10% baseline CHARGE-AF risk all showed merits for patient selection in AF screening efforts.Conclusion In patients with complete baseline CHARGE-AF data through routine Dutch primary care, CHARGE-AF accurately assessed AF risk among older primary care patients, outperformed both CHA2DS2-VASc and age alone as predictors for AF and showed potential for automated, low-cost patient selection in AF screening
    corecore